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A Normal Vectors Reversion

As mentioned in Section 3.4, since there is no access to informa-
tion about the global geometric structure, the covariance analysis
algorithm presented in Open3D [1] may yield two normal vectors
with opposite directions as candidates, both of them are correct. Fig-
ure A.1 illustrates such cases with yellow and green arrows. To ex-
tract normal vectors, we reverse the confusing normal vectors, i.e.,
yellow arrow cases, to make sure that the estimated normal vectors
uniformly point to the outside of organs. To achieve this, we identify
the semantic labels of a surface point and its nearest neighbour that
the normal vector is towards to determine whether or not the nor-
mal vector on that point should reversed. Concretely, if the semantic
labels are the same, i.e., the yellow arrow cases, it indicates the di-
rection of a normal vector points to the inside of the organ and the
normal vector should be reversed.

Figure A.1. Reversion of the direction of the normal vectors . Yellow
arrows mean confusing normal vectors, and green arrows mean reversed

normal vectors or normal vectors with correct directions.
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B Relation-balanced Cross-entropy Loss

To balance the loss weights for predicting different semantic relation
cases, we categorize semantic relation priors into three types based
on learning difficulties. Figure B.1 illustrates that three cases w.r.t.
different types of difficulties. The first type is the simplest, where the
surroundings are all background voxels. It means the voxel is not in
any of the organs. The second type is slightly more difficult than the
first type. It indicates the surrounding voxels are in the same category
and located within an organ. The third type is the most challenging
one, in which the central voxel is surrounded by voxels with multi-
ple semantic categories. It shows the voxel is on the contact margins
of multiple organs. Those complex and hard cases of semantic rela-
tion are difficult to predict. Therefore, during training, we empirically
balance the RCEloss with loss weights 0.1, 0.3 and 0.6, respectively,
based on the above analysis of three types of difficulties for semantic
relation prediction.

Figure B.1. Three types of semantic relation priors. The difficulty
increases gradually from top to bottom to learn the surrounding semantics

and capture the semantic relations of organs.

C Extra Experimental Results

Evaluation of other metrics. We calculate the Jaccard Index
(JAC) and 95% Hausdorff distance (HD95) to further evaluate our



Table C.1. Organ-wise quantitative results in terms of Jaccard Index and HD95 on Abdomen CT dataset. The best result for each class is bolded.

Jaccard Index (%)↑ HD95 (mm)↓
nnU-Net SegResNet UNETR SwinUNETR U-Mamba Ours nnUnet SegResNet UNETR SwinUNETR U-Mamba Ours

liver 94.29 90.86 82.60 86.95 94.42 87.35 17.08 29.35 58.76 71.22 11.41 8.09
right kidney 77.59 70.87 55.10 60.51 76.26 80.23 18.90 64.94 95.00 57.82 16.22 18.72
spleen 84.54 76.15 64.87 72.44 87.92 88.34 30.88 23.86 97.18 63.42 14.57 13.18
pancreas 71.85 59.24 42.96 53.53 76.23 76.35 11.12 21.84 44.93 96.44 8.16 11.27
aorta 92.64 90.31 80.44 88.38 91.75 94.42 9.27 12.44 42.97 17.50 4.38 3.20
inferior vena cava 79.20 72.03 61.19 70.21 78.92 80.93 8.33 17.01 40.26 70.12 7.62 11.58
right adrenal gland 69.94 57.20 46.77 59.57 68.63 66.79 3.71 7.78 27.30 8.84 4.44 4.53
left adrenal gland 65.58 52.10 31.15 51.14 71.28 69.13 4.92 6.69 23.47 11.70 4.88 4.07
gallbladder 57.39 50.13 36.25 40.11 59.18 65.74 21.59 40.25 102.12 75.94 25.67 20.27
esophagus 75.53 65.66 53.01 64.65 74.26 70.33 10.08 11.23 21.00 18.64 10.46 11.26
stomach 80.21 69.59 55.38 62.02 80.68 80.80 25.65 34.53 81.30 98.04 14.83 9.68
duodenum 60.78 46.93 32.90 43.29 63.85 64.49 27.54 33.21 49.49 57.30 21.08 16.94
left kidney 82.65 65.96 50.65 58.32 81.21 80.60 32.26 75.29 86.95 97.07 24.01 21.20

Avgerage 76.32 66.69 53.33 62.39 77.28 77.35 17.03 29.11 59.29 57.24 12.90 11.85

Table C.2. Organ-wise quantitative results in terms of Jaccard Index and HD95 on Abdomen MRI dataset. The best result for each class is bolded.

Jaccard Index (%)↑ HD95 (mm)↓
nnU-Net SegResNet UNETR SwinUNETR U-Mamba Ours nnUnet SegResNet UNETR SwinUNETR U-Mamba Ours

liver 94.84 93.31 87.69 92.81 94.78 95.12 3.92 6.31 29.48 8.61 3.53 2.24
right kidney 92.77 88.50 70.44 87.88 92.20 92.23 5.71 2.64 44.03 16.08 2.07 1.87
spleen 84.01 82.20 75.70 84.06 88.38 86.92 7.67 6.30 53.78 12.54 2.45 2.70
pancreas 76.04 70.20 57.12 63.27 76.21 77.75 4.90 9.19 18.46 17.95 4.64 3.50
aorta 87.39 87.46 74.28 80.29 85.93 90.51 5.45 6.72 12.47 6.98 4.85 10.34
inferior vena cava 69.38 70.63 57.31 64.53 71.26 71.73 11.56 6.03 26.07 12.95 6.78 7.18
right adrenal gland 45.33 43.53 29.36 38.31 45.85 46.99 6.45 5.86 14.19 8.28 6.82 5.80
left adrenal gland 54.10 51.27 31.02 31.46 56.56 56.51 5.58 5.12 19.20 12.18 4.83 4.56
gallbladder 62.87 64.91 31.87 48.56 70.71 74.34 13.22 27.35 69.40 32.23 9.63 7.92
esophagus 59.86 58.83 39.42 47.90 66.04 66.11 4.80 5.16 14.99 8.60 5.32 5.07
stomach 70.36 61.41 50.34 56.23 70.31 72.06 17.65 25.14 35.93 27.07 19.49 15.64
duodenum 53.94 49.63 32.26 42.06 57.59 56.84 14.00 14.84 30.66 22.14 12.63 13.99
left kidney 92.99 92.47 75.78 86.32 93.22 93.37 2.90 3.20 45.39 8.14 2.66 1.63

Avgerage 72.61 70.34 54.81 63.36 74.54 75.42 7.98 9.53 31.85 14.90 6.59 6.34

CPNet. The quantitative results in terms of JAC and HD95 on the Ab-
domen CT and MRI datasets are listed in Table C.1 and Table C.2,
respectively. Specifically, the average JAC of our model is 77.35%
on the CT dataset. The JAC of SOTA models, i.e., nnU-Net, Seg-
ResNet, UNETR, SwinUNETR and U-Mamba are 76.32%, 66.69%,
53.33%, 62.39%, and 77.28%, respectively. For the MRI dataset,
we get 75.42% of the average JAC. For SOTA models, the JACs
are 72.61%, 70.34%, 54.81%, 63.36%, and 74.54%, respectively.
Moreover, the average HD95(mm) of our CPNet is 11.85 on the CT
dataset. For SOTA models, the results are 17.03, 29.11, 59.29, 57.24,
and 12.90, respectively. For the MRI dataset, our CPNet achieves
6.34 HD95(mm). For SOTA models, the HD95(mm)s are 7.98, 9.53,
31.85, 14.90, and 6.59, respectively.

In addition, we have also performed another two runs of experi-
ments on our CPNet. The mean and confidence interval (CI) of our
trained models achieve 87.24%±0.81% DSC and 91.04%±0.90%
NSD on the Abdomen CT dataset, and 85.07%±0.17% DSC and
91.92%±0.23% NSD on the Abdomen MRI dataset.

Runtime Efficiency. We further compared the inference time and
the memory consumption with the SOTA methods. As shown in Ta-
ble C.3, it takes about 0.11 seconds to infer a CT volume with a res-
olution of 40×224×192 on a machine with one NVIDIA GeForce
RTX 4090 GPU (24G). It requires 4.077 GB of VRAM for testing.
For SOTA methods, including nnU-Net, SegResNet, UNETR, Swin-
UNETR and U-Mamba, the time costs are 0.05, 0.08, 0.04, 0.29 and
0.16 seconds, respectively.

D Disscusion on Limitations and Future work

Our proposed SRPP and MCPP modules are designed for segmenting
multiple organs with regular shapes and anatomical structure priors.

Table C.3. Quantitative results of time cost(s).

Abdomen CT Abdomen MRI

Ours 0.1123 0.1118
U-Mamba 0.1554 0.1533
UNETR 0.0363 0.0304

SwinUNETR 0.2894 0.2467
nnU-Net 0.0547 0.0538

SegResNet 0.0820 0.0813

It may not be suitable for segmenting tissues or organs with irreg-
ular structures, such as coronary arteries, vessels, etc. Therefore, in
future, it is worth further investigation into utilizing baseline models
and their lightweight variations, leveraging domain adaptation tech-
niques to improve the cross-modality generalization ability and ex-
ploring more anatomical constraints as extra regularizers for different
medical image segmentation tasks.

For practical applications, our model can be used to identify and
locate the organs, facilitate the analysis of the abnormalities of the
organs, locate tumors and control the dose of the X-ray beam in ra-
diotherapy. For model deployment, it is potential and feasible to in-
tegrate the trained model into some open-source software/system for
biomedical image analysis, e.g., 3D Slicer, MITK, etc. Moreover, it
is still an open question to clarify the interpretability of the proposed
model, and so are other deep-learning-based models. We believe the
deep-learning-based AI system still works in the assisted diagnosis
mode, which requires the doctor to finalize the diagnosis.
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